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Effect of particle inertia on the viscous-convective subrange

Christopher A. Jeffery*
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Canada V6T 1Z2
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The spectral scaling of inertial particles in isotropic, homogeneous turbulence is investigated. The particle
density spectrum of the Elperin-Kleeorin-Rogachevskii small-scale correlation function@Phys. Rev. E58, 3113
~1998!# is derived and extended to larger scales. In the scale range~13–60!h, a peak in the spectrum is
observed when the ratio of the energies in the compressible and the incompressible components of the parti-
cle’s velocity is greater than 0.007~Stokes number.0.15!. The peak is a manifestation of the accumulation of
inertial particles in regions of high strain and low vorticity. The size and location of the peak are compared
qualitatively with measurements of particle intermittency~preferential concentration! from direct numerical
simulations.

PACS number~s!: 47.27.Qb, 47.402x
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I. INTRODUCTION

Recently, much attention has been given to a sim
model of passive scalar advection by a velocity field w
long-range spatial correlations but no memory. Interes
this so-called ‘‘d-correlated’’ model stems from two fronts
first- and second-order statistics can be solved exactly
with complete mathematical rigor using path integral@1,2#,
functional @3,4#, or parametrix @5,6# methods and, con
versely, an explicit set of recursive equations for all high
order moments can be derived and solved with an appro
ate closure approximation. In particular, Kraichnan’s clos
by ‘‘linear ansatz’’ @7,8# has motivated a large number o
studies in this field~see Ref.@9#, Sec. IV! because it exhibits
anomalous scaling behavior and provides a good tes
ground for the capabilities of renormalization-group metho
@10–13# and renormalized perturbation theory@14,15#. Re-
cently, thed-correlated model has also been used to as
the effect of compressibility@16,17# or particle inertia
@18,19# on scalar statistics, the latter being driven, in part,
the phenomena of ‘‘preferential concentration’’—the acc
mulation of dense particles in regions of high strain and l
vorticity in a turbulent flow—developed largely in the eng
neering community and reviewed in@20#. In this short work,
the scalar spectrum of the second-order correlation func
presented in@19# using thed-correlated model is derived an
extended to larger scales, and a more direct compariso
made with results from numerical studies of preferential c
centration@21#.

Although equations for the passive scalar covariance
compressible velocity field have only recently appeared,
incompressible case has a long history that can be tra
back to the classical work of Richardson@22#. A diffusion
equation for the second-order spatial correlations in a rap
fluctuating velocity field has been repeatedly recovered
number of papers@23–26# with varying expressions for the
effective diffusivity,Deff(x). Thed-correlated model can b
derived formally by the velocity field renormalizatio
ud(t,x)5d21u(d22t,x) where the molecular diffusivityD is

*Electronic address: cjeff@geog.ubc.ca
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not rescaled (Dd5D) and where the long time rescalingd22

is chosen to reproduce the conventional or normal diffus
^x2(t)&;t associated with a mean-field regime@27,28#. Un-
der certain general conditions the random fieldud(t,x) con-
verges to a white-noise process in the sense of distributi
i.e.,

lim
d→0

^ud~ t1s,x1r !ud~ t,x!&52td~s!^ud~x1r !ud~x!&,

~1!

wheret is the renewal time andr ! l 0 wherel 0 is the integral
length scale. It is important to emphasize that this renorm
ization is not a uniformly valid theory in the large-scale lim
(r→ l 0) because of the strong infrared divergence in
k25/3 Kolmogorov velocity spectrum, and thereforeDeff ob-
tained under this rescaling should not be interpreted as
eddy diffusivity. From the renormalization above, it follow
trivially that the rescaled Eulerian correlation tim
limd→0 tE;d2 is much less than the molecular diffusio
time, and therefore this renormalization corresponds to
limit Pr@1, where the Prandtl number Pr5n/D, andn is the
kinematic viscosity.

The correct renormalization in the large-scale limit for t
d-correlated model with Kolmogorov velocity statistics ca
be found by computing an effective time-rescaling functio
r2(d), so that the ensemble average of the rescaled pas
scalar field^cd„x/d,t/r2(d)…& has a nontrivial limit. This
was done by Avellaneda and Majda@2#, who found the su-
perdiffusive scalingr(d)5d2/3 and concluded that the edd
diffusivity D* is unbounded, satisfyingD* (r )→` as ur u
→`. Thus the second-order correlations are not well
proximated by a simple Gaussian profile shape at large
tances.

The diffusion equation obtained from thed-correlated
model was solved by Kraichnan@26# in the small-scale limit
by expandingDeff(r) to the first order inr 2. He derivedk21

viscous-convective scaling for the scalar spectrum withk
greater than the Batchelor wave number in agreement w
the earlier results of Batchelor@29#. Recently, both Bogucki
et al. @30# and Chasnov@31# compared the Kraichnan an
Batchelor models using direct numerical simulations a
6578 ©2000 The American Physical Society
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PRE 61 6579EFFECT OF PARTICLE INERTIA ON THE VISCOUS- . . .
found, unambiguously, that the Kraichnan ord-correlated
model is ‘‘correct’’ for Pr@1, in agreement with the analys
above. Elperinet al. @18# used thed-correlated model to as
sess the effect of particle inertia on spatial statistics
found a mechanism for intermittency in particle concent
tions ~preferential concentration!. They derived solutions for
the nth-order correlation functionFn of the form Fn(t,r )
5P i , j

n F2@x( i )2x( j )#exp@0.5n(n21)g2t# where iÞ j , from
which it follows that if the second moment of the partic
concentration grows (g2.0), then so do all higher-orde
correlation functions. A Reynolds number criterion forg2
.0 was derived that, when satisfied, implies self-excitat
of fluctuations in particle concentration without extern
pumping, and thus intermittency. In a later work, Elpe
et al. @19# presented a steady-state solution forF2(r ) in the
small-scale regime,r less than the Kolmogorov lengthh
5(n3/«)1/4, where« is the energy dissipation rate, and foun
that anomalous scaling appears when the degree of c
pressibilitys.1/27.

In these studies of particle inertia using thed-correlated
model, implicit and explicit assumptions~e.g., Pr@1) have
been made. First consider the molecular diffusivityD. The
Kraichnan model, derived in@26# assuming a continuous pa
ticle field, gives a spectral decay of the form exp(2hBk)
where hB5(Dth)1/2 is the Batchelor length andth
5(n/«)1/2 is the Kolmogorov time. Using Einstein’s relatio
D;d

*
21, whered* is the particle diameter,hB→0 as d*→`, from which it follows that the spectral decay is incom

patible with the particle radial distribution function forhB
,d* . Thus to correct for finite particle size in what follow
an effective diffusivity defined byD̃5max(D,d

*
2 th

21) is used,
where the tilde has been dropped. Furthermore, using
@1 and the effective diffusivity,d* !h that is also a stated
assumption in@19#. And finally, although the effect of par
ticle inertia is considered where the particle densityrp is
greater than the fluid densityr f , the particle mass loading
aprp /r f whereap is the volume fraction of particles is as
sumed to be small, implying an insignificant modulation
the turbulence, typically referred to as one-way coupling

The paper is organized as follows. In Sec. II the cova
ance equation for inertial particle concentration first deriv
in @18# is discussed and the corresponding spectral equa
for F2(k) in the regimek@h21 presented and solved. Limi
tations of F2(k) extrapolated into the regimek;O(h21)
are presented in Sec. III, and in Sec. IV I derive a clos
form expression forF2(k) that is accurate in this regime
Section V is a discussion of the effect of particle inertia
F2(k); a number of figures are used for illustration and
explicit comparison is made with results from Wang a
Maxey @21#. Section VI is reserved for conclusions.

II. SCALAR COVARIANCE EQUATIONS

The number densitynp(t,x)PR15@0,̀ ) of small par-
ticles in a compressible velocity field is described by t
advection-diffusion equation

]np

]t
1“•~npU!5DDnp , ~2!
d
-

n
l

m-

Pr

f

-
d
on

-

whereU5Vp1u is a random velocity field,Vp5^U& is the
mean-particle velocity, andDPR1 is the effective molecular
diffusion coefficient discussed in Sec. I. Without loss of ge
erality, we can consider the caseVp50 because of the Gal
ilean invariance of Eq.~2!. An equation for the second-orde
correlation function F2[F5^Q(x)Q(y)& can be con-
structed from Eq.~2! upon multiplication byQ(y):

]F

]t
52D¹2F22^“•$u~x!@Q~x!Q~y!1N~x!Q~y!#%&,

~3!

whereQ5np2N andN5^np& is the mean number densit
of particles. First consider the incompressible case“•u50.
Neglecting diffusion and averaging over an ensemble of
grangian trajectories for a given realization ofu(t,x), the
field Qu(t1Dt,x) can be written in terms of a Taylor serie
expansion ofQu(t,jDt) aroundx ~@19#, Appendix A!:

Qu~ t1Dt,x!5^Qu~ t,jDt!&j ,
~4!

Qu~ t,jDt!5Q~ t,x!1
]Q

]xm
~jD12x!m1¯ ,

wherejDt are the Lagrangian paths

jDt5x2E
0

Dt

u~ ts,js!ds, ~5!

ts5t1Dt2s and ^ &j is an ensemble average overj that,
for a given realization ofu(t,x), involves the averaging ofu
in the neighboring spacejDt2x and through future timesDt.
Using thed-correlated velocity field discussed in Sec. I, t
ensemble averages^ & in Eq. ~3! and ^ &j in Eq. ~4! become
independent, and the Lagrangian and Eulerian statistics
verge. Substituting Eqs.~4! and ~5! into Eq. ~3! and taking
the limit Dt→0 in such a fashion thatjs→x and
*0u(ts)u(t)ds is finite @26# gives a diffusive term

^“•$u~x!@Q~x!Q~y!1N~x!Q~y!#%&5^t@um~x!un~x!

2um~x!un~y!#&
]2F

]xm]yn
,

wheret is the momentum relaxation time from Eq.~1!. Note
that thed-correlated in time random process yields Marko
ian behavior for the second-order statistics at all scales,
though, in general, Eq.~4! includes non-Markovian effects.

For a compressible velocity field, Eq.~4! becomes the
Feynman-Kac formula, which includes the characterist
GDt5exp@2*0

Dtb(ts,js)ds#'12*0
Dtb(ts,js)ds where b

5“•u @19#. Evaluating the third term in Eq.~3! as above for
bÞ0 yields

]F

]t
522@Dmn~0!2Dmn~r !#

]2F

]xm]yn

12^tb~x!b~y!&F24^tum~x!b~y!&
]F

]xm
, ~6!
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where r5y2x, and Dmn5Ddmn1^tumun&. Equation ~6!
was initially derived by Elperinet al. @18# by first evaluating
^GDtnp(t,jDt)&j along the Wiener path@19#:

jDt5x2E
0

Dt

u~ ts,js!ds1~2D !1/2w~Dt !, ~7!

wherew(t) is a Wiener process, and then passing to the li
Dt→0 of ]F/]t5@F(t1Dt)2F(t)#/Dt. However, Eq.~6!
in @18# contains the additional source termI 2
52^tb(x)b(y)&N2. The origin of this discrepancy can b
elucidated by considering the scalar covariance equa
constructed from Eq.~2! multiplied by np(y). Deriving an
equation for]^np(x)np(y)&/]t as per Eq.~6! for a homoge-
neous particle field and subtracting Eq.~6! leaves

]N~x!N~y!

]t
52^tb~x!b~y!&N~x!N~y!. ~8!

Equation~8! should not be confused with the equation f
]N2/]t that appears in@32#, which must be derived from the
equation for the mean fieldN. However, Eq.~8! does dem-
onstrate that the termI 2 is best associated with a source
N(x)N(y) and notF.

Particles with small but finite inertia have a velocityU
Þv wherev is the velocity of the surrounding fluid. Thus i
the case in whichv is divergenceless, homogeneous, a
isotropic,U ~or u! will be compressible, homogeneous, a
isotropic with the correlation function@16#

^tum~x!un~x1r !&5DTH @F~r !1Fc~r !#dmn

1
rF 8

d21 S dmn2
r mr n

r 2 D1rF c8
r mr n

r 2 J , ~9!

where F85dF/dr, F(0)512Fc(0), and DT5u0
2t/d,

whereu0 is the characteristic velocity of turbulent fluctu
tions with relaxation timet, andd is the spatial dimension
The functionF(r ) describes the solenoidal~incompressible!
component of the longitudinal correlation coefficien
whereasFc(r ) describes the potential~compressible! compo-
nent.

Elperinet al. @19# solved Eq.~6! using Eq.~9! for d53 in
the viscous regimer ,h. In this regime the correlation co
efficients can be written as

F~r !5~12e!@12a~r /h!2#, Fc~r !5e@12a~r /h!2#,
~10!

wherea is a constant ande is a measure of the compres
ibility. The expression forF(r ) is accurate in the ranger
<5h estimated from the familiar Batchelor parametrizati
for the second-order structure function@33#. The correspond-
ing expression forFc(r ) is less accurate in the regimer
;O(h) because of the higher-order derivativesFc9 and Fc-
that appear viâtb(x)b(y)& in Eq. ~6!. In Sec. IV, Eq.~10!
for F(r ) is used with a more accurate expression forFc(r )
that is also valid in the ranger<5h.

In order to recover the well-known viscous-diffusive r
gime in the limit e→0, it is appropriate to writea
5 f (t,u0 ,h) andt5g(ugu) whereg52(1/q)th

21 is the av-
it

n

d

erage value of the least principal rate of strain, andq is a
universal constant for high Reynolds number flows@29#. Re-
cent numerical simulations suggestq'5.5 @30,31#. The
choice t5ugu21/6'th and a5h2/(12t2u0

2) is consistent
with both the well-known resulta'h2d/(30th

2u0
2) and the

value of q in the viscous-convective regime givingq5A30
'5.5. The solution of Eq.~6! using Eq.~10! is @19#

F~r !5
1

X
~11X2!m/2S~X!, ~11!

where X5(abmPe)1/2r , S(X)5Re$A1Pz
m(iX)1A2Qz

m(iX)%;
Pz

m( iX) andQz
m( iX) are the Legendre functions with imag

nary argumentZ5 iX;bm5(113s)/3(11s), m515s/(1
13s), z(z11)5m225m12; Pe5u0

2t/D@1 is the Pe´clet
number, and the parameter of compressibilitys5e/(1
2e). Note that for an incompressible velocity field,s50,
the correlation function for 0<r !(aPe)21/2l 0 is F(r )
5const, corresponding to the well-knownk21 viscous-
convective scaling.

It is often useful to consider the spectral covariance d
sity function C(k)5(2p)2d*dr F(r )exp(2ik•r ), where
CPC : Re$C%PR1 , C(k)5C* (2k), to gain some under-
standing of the relative contribution of individual wave num
bers to the overall variance. Fourier transforming Eq.~6!
@]/]r j→ ik j ,r j→ i ]/]kj # and using isotropic, viscous regim
velocity correlation coefficients~10! as above yields a
Bessel-type equation accurate fork.h21;

052l2k2C1k2C91BkC81CC, ~12!

where C(k)PR1 , l5@6Dugu21(122s/(113s)#1/2 is a
diffusive length scale (}hB),B52@2115s/(113s)#, C
5120s/(113s), and the primes denote differentiation wit
respect tok. The spectral densityC(k) may be obtained by
solving Eq. ~12! @34# or by Fourier transforming Eq.~11!
directly giving

C~k!5C1kmKn~lk!1C2kmI n~lk!, ~13!

with $K,I ,m%PR, nPC; and whereI and K are modi-
fied Bessel functions, m5(12B)/2523/2215s/
(113s) and n5@(12B)224C#1/2/253/2@12(100/3)s/
(113s)2#1/2. As per Eq.~11! discussed in@19#, two quali-
tatively different regimes characterize the behavior of E
~13!. For s<1/27, Im$n%50, C250, and the scaling in the
range k!l21 is normal; i.e.,C(k);km2n. On the other
hand, fors.1/27, Re$n%50 and the scaling is anomalou
i.e.,C(k);km cos(unuln k1f), wheref is an arbitrary phase
Furthermore, the presence of the additional parameterf ~i.e.,
C2Þ0) implies that the spectral transfer is nonlocal—giv
Cuk0

the spectral transfer]C/]kuk0
is determined by a

boundary condition that setsf at somek!k0 near the
boundary of the inertial- and viscous-convective regim
The nonlocal nature of the spectral covariance fors,1/27
prevents the determination ofC1 andC2 without resorting to
a direct numerical simulation of Eq.~2! and, therefore, this
regime is not considered further in this work. Note that f
an incompressible velocity fields50, Eq. ~13! reduces to
the analytic form first derived in@35#: C(k);k23(1
1lk)exp(2lk).
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III. ANALYSIS

The time-evolution equation for the spherically integrat
scalar covariance spectrumE(k)54pk2C(k) may be writ-
ten as

]E~k!

]t
52

]x~k!

]k
22Dk2E~k!1P~k!, ~14!

where x(k) is the scalar dissipation rate andP(k) is the
production spectrum of scalar variance. Solving forx in the
steady state for the rangek!l21 gives

x~k!'x02E
k

`

P~j!dj, ~15!

where x052D*0
`k2E(k)dk. Equation ~15! has been used

successfully for incompressible flows whereP50 and
x(k)5x0 to determine the constantC1 in Eq. ~13! as a func-
tion of (x0 ,ugu,l), in good agreement with numerical simu
lations@30,31#. In fact, in the incompressible casex0 can be
evaluated analytically to giveC15x0l3/2/(p3/22&ugu) @35#.
For inertial particles (sÞ0) the terms in Eq.~6! correspond-
ing to P(k) in Eq. ~14! may be easily identified; the covar
ance production terms are the second term and one-hal
third term on the right-hand side~rhs! of Eq. ~6!. Note that
the third term is equal to the sum of the contribution fro
incompressible advection along compressible streaml
~i.e., spectral transfer! and the contribution from compress
ible advection along incompressible streamlines~i.e., spec-
tral production!. Using Eqs.~9! and~10!, it follows thatP is
given by

P~k!54pk2
10ugus

3~11s!
@6C1kC8#. ~16!

Plots of k vs P(k) with x0 set to unity,C1 calculated
numerically from Eq.~15!, andC given by Eq.~13! accurate
for k.h21 are shown as the lines in Fig. 1. The figu
reveals that ifP(k) is extended to the nonviscous regimek
,h21, then the extrapolated production of variance due
particle inertia continues to increase with decreasingk. Is this
physically reasonable? Consider the term 2^tb(x)b(y)&F in
Eq. ~6!. The correlation functionB(r )5^b(x)b(y)& has been
evaluated in@36# using a quasinormal closure for the fourt
order moments:B(r );(121521080y2198y2124y317y4)
3(11y)216/3 wherey5Gr2 and G5h223023/2. The con-
stant of proportionality follows fromB(r )530ugu2s/(1
1s)1¯ calculated from Eqs.~9! and~10!. The scalar spec
trum of the divergenceEb(k) is available in closed form
@37#:

Eb~k!5
2

p E
0

`

kr sinkrB~r !dr,

5
30ugu2sHk

1215~11s!
@1215k29/6K23/6~kG21/2!11080e2

2594f e32~360f 21198!e41~735f 32240f !e5

1~735f 2224!e61147f e717e8#, ~17!
he

es

o

where

en5~21!n21@2k29/6K35/62n~kG21/2!

1~26/3!G1/2k23/6K29/62n~kG21/2!#,

f 5G1/2/k,

and

H5p23/22223/6cos~29p/6!G~213/3!G241/12.

A normalized plot ofEb(k) is shown in Fig. 2. The figure
reveals thatEb(k) begins to decrease fork less than about
0.35h21. However, it is not surprising that a decrease inP
below h21 is not observed in Fig. 1 if one considers th
truncated form ofB(r ) used in the calculation ofC andP. In

FIG. 1. Log-log plot of the production spectrum of scalar va
ance for different values ofs. The lines are from Eq.~16! and the
symbols from Eq.~22! where the addition of a higher-order term
Fc(r ) has produced the correct asymptotic limk→0 P(k)50. The
parameter values arex051, «50.01, and Pr51000.

FIG. 2. The scalar spectrum of the velocity divergen
from Eq. ~17!.
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fact, calculatingB(r ) with viscous-regime velocity correla
tion coefficients~10! gives B(r )5const, which is not par-
ticularly accurate forr .h. In the next section, new expres
sions for C and P are derived that may be extended
smallerk with greater confidence.

IV. EXTENSION TO LARGER SCALES

The velocity correlation coefficients given in Eq.~10! are
the first two terms in a general expansion in even power
r. Higher-order terms in theFc expansion, through deriva
tives Fc8 to Fc- , make a significant contribution to
^um(x)b(y)& and B(r ). In particular, expandingFc to the
fourth order,Fc(r )5e@12a(r /h)21ba(r /h)4#, where b
is a constant, gives

B~r !5e30ugu2F12
14b

3 S r

h D 2G , ~18!

which with b51/154 well captures the overall behavior
Pinskyet al.’s @36# more accurate expression forB(r ), and
is particularly accurate in the ranger<5h ~not shown!. The
fourth-order term is ignored in̂um(x)un(y)& as it makes
only a minor contribution in this range. Thus the expressio
for both F(r ) @Eq. ~10!# and Fc(r ) are accurate in ther
<5h regime.

Evaluating the contribution of the fourth-order term inFc
with b51/154 to the last two terms on the rhs of Eq.~6! and
Fourier transforming gives, respectively, two new terms
Eq. ~12!:

10

11
h22

s

113s
C91

4

11
h22

s

113s
~5C91kC-!. ~19!

Writing C;k231d f (k) in the viscous-convective regim
~i.e.,E;k21) and substituting above we find that the seco
term, compared to the first, is of the orderd and can be
ignored. Thus the dominant contribution of the fourth-ord
term in Fc is throughB(r ) producing a new equation forC
of the form

05~k21A2!C91BkC81CC,

whereA5@10/11h22s/(113s)#1/2, B andC are defined as
per Eq.~12!, and the diffusion term2l2k2C of Eq. ~12! has
been ignored for the rangek!l21. The substitutionj5(1
2 ik/A)/2 produces the celebrated hypergeometric equat

05j~j21!C91B~j20.5!C81CC

with solution @34#

C5Re$C3j2a
2F1~a,a2c11,a2b11;j21!

1C4j2b
2F1~b,b2c11,b2a11;j21!%, ~20!

where 2F1PC is a hypergeometric function,a5(B21)/2
1@(12B)224C#1/2/2, b5(B21)/22@(12B)224C#1/2/2,
andc5B/2. Neither Eq.~12! nor ~20! is valid over the whole
range ofk, and they are in fact related through the asympto
limk→0 C @Eq.~12!#5 limk→` C @Eq. ~20!#. For Prandtl
of

s

d

r

n

c

number Pr@1 ~i.e., l!h), there will be a well-defined re-
gion neark5h21 where these two expressions forC join
smoothly. Thus we can write

C5H C1kmKn~lk!, k>km

C3 Re$j2a
2F1~a,a2c11,a2b11;j21!%, k,km

~21!

valid for s<1/27 where C35G(n)(2A)2a(l/2)2n/
@2 cos(ap/2)#C1 and km is computed numerically from the
intersectionC(km) @Eq.~12!#5C(km) @Eq. ~20!#.

Incorporating the first term of Eq.~19! into the scalar
production spectrum~16! gives

P~k!54pk2
10ugus

3~11s! F6C1kC81
C9

11h2G . ~22!

Plots of k vs P(k) with x0 set to unity,C1 calculated nu-
merically from Eq.~15!, andC given by Eq.~21! are shown
as the symbols in Fig. 1. The production of scalar varian
does, in fact, decrease ask→0, consistent withEb(k) shown
in Fig. 2. However, the accuracy ofx(k) determined from
P(k) via Eq. ~15! in the rangek,h21 has yet to be deter
mined.

A useful measure of the accuracy ofB(r ) and henceP(k)
can be constructed from the spectral density of the velo
divergence f(k)5Eb(k)/(4pk2). The scalar production
term 2̂ tb(x)b(y)&F from Eq. ~3! approximated to fourth
order using Eq.~18! and Fourier transformed to giveQ(k)
54pk2$10ugus/@3(11s)#@3C1C9/(11h2)#% can be
compared with the exact expression 4pk2(2tf* C), where
* is a spherical convolution. This comparison is shown
Fig. 3 with x0 set to unityC1 calculated numerically from
Eq. ~15!, andf andC given by Eqs.~17! and ~21!, respec-
tively. Although Q(k) is not equal to the production spec
trum P(k)—it lacks a contribution from the source term
2^tum(x)b(y)&]F/]xm—a comparison ofP(k) in Fig. 1
~symbols! and Q(k) in Fig. 3 ~lines! reveals that the two

FIG. 3. Comparison of the exact scalar production te
4pk2(2tf* C) ~symbols! with the approximationQ(k) ~lines!.
The cutoff used in Eq.~23! at k50.35h21 is shown as a dashe
vertical line. For parameter values see Fig. 1.
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functions are very similar. Both the approximate and ex
source terms shown in Fig. 3 decrease with decreasingk, but
clearly Q(k) overestimates the source term in the regionk
,h21. It is therefore appropriate to introduce a cutoffkc in
the evaluation ofx(k) via Eq. ~15! wherekc is defined by

E
kc

`

Q~k!5E
0

`

4pk2~2tf* C!dk5
10ugus
~11s!

E
0

`

E~k!dk.

For 0<s,1/27, kc50.35h21 suffices with reasonable ac
curacy and is shown as the dashed vertical line in Fig
Note that thisk-space cutoff is consistent with the previo
statement that the velocity correlation coefficients are ac
rate in the ranger<5h. Equation~15! therefore becomes

x~k!'x02E
k

`

P~j!dj, k5max~k,0.35h21!. ~23!

Equations~21!–~23! complete the determination ofC(k)
as a function of the parametersx0 , ugu, l, ands.

V. SPECTRA AND DISCUSSION

Equation~6! for the correlation functionF(r ) reveals that
the covariance of inertial particles is controlled by the co
petition between radial diffusionDeff¹r

2F with positive-
definite diffusivity Deff , radial advectionVeff]F/]r with
positive radial velocityVeff;2^tur(0)b(r)&, and production
F/tp with time constanttp

21;^tb(0)b(r )&. Isotropy and/or
parity invariance of the turbulent flow ensures thatDeff→D
andVeff→0 at the smallest scalesr→0. Production is maxi-
mal at r 50 but the accumulation/rarefaction of particles
such small scales is mitigated by molecular diffusion, wh
transports the covariance to scales larger thanl. The com-
pressible velocityVeff , which peaks nearr 510h, always
contributes to the transport of particle covariance to lar
scales. At near inertial scales, however,Deff begins to domi-
nate both production and ballistic transport, thereby preve
ing the build up of covariance, i.e., preferential concent
tion. We can therefore expect preferential concentration
peak near the inertial-viscous subrange transition and thi
in fact, what the present model predicts.

It is unlikely that the production of scalar variance due
particle inertia—limited to smallk as shown in Fig. 1—has a
large effect on the scaling of the inertial-convective subra
for s,1/27, and, in fact, simulations of massless particles
low-Mach number compressible turbulence show little var
tion in scaling fors51 @38#. Numerical simulations@30,31#
of the viscous-convective subrange for incompressible fl
s50 suggest that the scale breakkb between the inertial-
and viscous-convective subranges occurs, naturally, at
intersection between the inertial-convective spectr
Eic(k)5Cicx ic«21/3k25/3 and E(k):Eic(kb)5E(kb) where
Cic'3/4 is the Obukhov-Corrsin constant,« is the energy
dissipation rate, andx ic[x(kb)5const is the inertial-
convective range scalar dissipation rate. Fors50, x ic5x0
and the scale break is given bykb5(Cic /q)3/2h21

'0.05h21 whereq is a function ofugu, whereas forsÞ0,
x ic decreases with increasings according to Eq.~23!. How-
ever, for purposes of comparison, it is convenient to
x ic(s) to a constant reference value, i.e., unity. The sca
t
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dissipation in the viscous-convective range is theref
xvc(k,s)5x(k,s)x ic /x(kb ,s), which increases with in-
creasings.

The scale breakkb shown in Fig. 4 has been compute
numerically using model ~21!–~23! and the inertial-
convective range spectrum~above! for Pr in the range 500 –
8000. Also shown is a measure of the increase in sc
dissipation rate through the viscous-convective regi
xvc(`,s)/x ic21. The figure illustrates a number of robu
trends that are worthy of discussion. First,kb increases from
'0.05h21 at s50 to '0.135h21 near s50.03; the
viscous-convective regime gets pushed to smaller sca
Thus ass increases, the accuracy of the entire mode
inertial-convective/viscous-convective spectrum also
creases, under the assumption that the scalingEic;k25/3 re-
mains invariant. Second, and as mentioned above,xvc(`)
increases with increasings. To aid in this discussion
xvc(`) has been fit to the approximate analytic form

xvc~`!'x ic exp@ ln~Pr!0.85~8.5s13480s3!#, ~24!

depicted withh in Fig. 4. This equation demonstrates, fo
mally, the self-excitation~exponential growth! in the second
moment of particle concentration first discussed in@18#. The
weak Pr dependence results from a ‘‘longer’’ viscou
convective regime with increasing Pr and therefore m
self-excitation. Self-excitation begins near s
'0.04 ln(Pr)20.85 and along with self-excitation of higher
order moments leads to preferential concentration.

The scalar spectrumE, computed numerically using
model~21!–~23! and the inertial-convective range spectru
is shown in Fig. 5 along with the change in scalar dissipat
rate xvc(k)/x ic . Both features discussed above—the su

FIG. 4. Plot showing both the scale breakkb ~right axis! be-
tween the k25/3 inertial-convective subrange and the viscou
convective subrange, and the measure of self-excita
xvc(`,s)/x ic21 ~left axis! computed numerically~lines! and ap-
proximated analytically by Eq.~24! ~h!. These functions have bee
calculated using model~21!–~23! at four Prandtl numbers and ap
pear such that the lines are, from top to bottom, Pr58000, 3000,
1200, and 500.
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pression of the viscous-convective regime at larger sc
and the self-excitation of the spectrum—are clearly visib
Beginning ats'0.007, a peak atkp'0.1h21 is visible in
the spectrum and becomes more pronounced ass increases.
The wave numberkp is a useful measure of the length sca
at which preferential concentration occurs, and it is discus
further below.

An important parameter in most studies of preferen
concentration in the literature is the Stokes number, wh
plays a role similar toe ~or s! in this work. The Stokes
number is usually defined as the ratiotp /th wheretp is the
particle aerodynamic time constant@20#. Comparing Eq.~18!
to Pinsky et al. @36# expressionB(r )5(4/15)tp

2/th
41¯

gives

e5
4

15S tp

th
D 2

. ~25!

The wave number of the spectral peakkp defined by
]E/]kukp

50 is plotted as a function of the Stokes numb

tp /th in Fig. 6 in the range 0.007,s,1/27 corresponding
roughly to 0.15,tp /th,0.35. The figure reveals that th
characteristic scale of preferential concentration increa
from '60h at a Stokes number of 0.15 to'13h at a Stokes
number of 0.35, consistent with the estimate in@20# that
particles with a Stokes number of around 1 are concentr
at length scales~6–20!h. Note also that rapid growth in th
viscous-convective regime for Stokes numbers greater
0.15 (s.0.007) shown in Fig. 5 is consistent with the rap
growth in preferential concentration in the range of Stok
numbers 0.2–1 shown in Fig. 18 of@21#.

FIG. 5. The scalar spectrum computed at variouss using model
~21!–~23! and the corresponding increase in scalar dissipation r
Note that the increase inxvc begins atk50.35h21 as per Eq.~23!.
The parameter values are«50.01 and Pr51000.
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VI. CONCLUSIONS

The effect of particle inertia on the viscous-convecti
subrange has been investigated fors<1/27 ~small Stokes
number regime!. Using thed-correlated model, an analyti
expression for the second-order spectral density of ine
particles is derived as a function of a Batchelor-type dif
sive length scale, the rate of strain of Kolmogorov eddi
the scalar dissipation rate, and the degree of compressib
~Stokes number!. A rich spectral behavior is observed in th
viscous-convective regime that includes the following fe
tures. Particle inertia suppresses smallk viscous-convective
scaling; the start of the viscous-convective regime is pus
to smaller scales with increasings, beginning neark
'0.135h21 for 0.02,s,1/27 ~Stokes numbers'0.3!. As-
sociated with increased compressibility is the emergence
well-defined ‘‘bump’’ in the spectrum beginning at as
'0.007 ~Stokes number'0.15!. The bump represents th
accumulation of inertial particles in regions of high stra
and low vorticity in the flow and is a manifestation of inte
mittency in the spatial statistics. The characteristic scale
this preferential concentration ranges from around 60h at s
50.007 ~Stokes number50.15) to about 13h at s51/27
~Stokes number50.35). The relative height of the bump in
creases exponentially with an increasing Stokes num
consistent with results from numerical simulations@21# that
show a rapid increase in preferential concentration with
increasing Stokes number for Stokes numbers less
unity.
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FIG. 6. Plot showing the characteristic scale of preferential c
centration as a function of the Stokes number. The wave numbekp

is computed from]E/]kukp
50 using model~21!–~23!.
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